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Abstract

The isometry transformations of the type IIB superstring theory in a five-dimen-
sional anti de Sitter (AdS) spacetime with a five-sphere are discussed. The string the-

ory on AdS spacetime is useful to examine a duality between open and closed sirings.
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1. Introduction

The string theory [1, 2] is a theory which describes all the interactions of the fun-
damental particles in nature. Several string theories with different types of gauge

symmetries were constructed in the past. It is now believed that these string theories
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are different aspects of one fundamental theory, a mother theory called the M-theory.
A main issue in the research of the string theory had been to understand a mathemati-
cal structure of the theory. However, it now becomes more attractive to particles
physicists after a discovery of non-perturbative objects called D-branes [3] in it. It is
applicable to phenomenology of realistic. models of particle physics and cosmology.
In future the string theory may be tested in accelerator physics or in observations in
the universe.

In this paper I would like to discuss a certain formulation of a string theory in a
curved spacetime. In the rest of this section I will first summarize a history of the
string theory starting from the birth of the string theory in the strong interaction phys-

ics to recent developments. Then, I will explain what I would like to discuss in this

paper.

1.1 History of string theory

The string theory was originally constructed in the late ‘60s as a model of the
strong interaction, i.e. an interaction among quarks in unclei and other hadrons. A
meson made of a quark and an anti-quark behaves like a tube or a string when they
are separated. The string model of hadrons can explain particles with large spins,
which had been difficult to explain in older models of the strong interaction. Until a
new theory, quantum chromodynamics (QCD) was found in the mid ‘70s, the string
model had been a successful theory of the strong interaction. Particle physicists sus-
pected that the string model was too mathematical and restrictive by many theorems
s0 that it does not have enough freedom to explain more complex patterns of scatter-
ing processes in accelerator experiments. Theoretical physicists, however, studied the
string model adoring its mathematical beauty.

After the invention of QCD the original string model for the strong interaction was
discarded by particle physicists quite for a while. The string theory was revived in
the mid ‘80s as a unified theory of all the interactions of the fundamental particles.
Since then, the string theory has been extensively studied by huge numbers of parti-

cle and theoretical physicists. These studies are mainly concerned with mathematical
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structures of the string theory rather than applications to realistic models of particle
physics.

A string theory in general is a field theory on a two-dimensional world-sheet em-
bedded in spacetime, which a string sweeps out. There are two kinds of
strings:closed strings and open strings. In a perturbative formulation of the string the-
ory these two kinds of strings are distinguishéd by different boundary conditions on
the world-sheet. One can also consider string theories with spacetime supersymme-
try, a symmetry between bosons and fermions. Before 1995 five supersymmetric
string theories were known: type I, type IIA, type IIB, SO (32) heterotic and Es X E3
heterotic string theories. The type I theory contains both of open and closed strings,

while other four theories contain only closed strings.

1.2 Recent developments in string theory

In 1995 it was discovered that non-perturbative objects, D-branes, exist as con-
stituents of string theories. Using D-branes non-perturbative aspects of siring theories
have begun to be understood. Important issues in field theories of particle physics of-
ten need analysis in a strong coupling region, where non-perturbative effects are
crucial. Understanding of its non-perturbative effects have turned back the string the-
ory to applications in various phenomena in nature.

A wuseful concept in non-perturbative analysis of field theories is duality, which
means an equivalence between two theories which look quite different. The duality
often exchanges an elementary excitation of a field in one theory and an excitation
on a non-perturbative object such as a soliton in another theory. A non-perturbative
object in the string theory was found from open strings with the Dirichlet boundary
condition, and is called D(irichlet}-brane [3]. Detailed studies of a relation between a
field theory on the D-branes and a geometry around the D-branes.showed that there
is a duality between them. As the field theory is in general an effective theory of
open strings while the geometry is represented by a supergravity which is an effec-
tive theory of closed strings, this is open-closed duality. The simplest D-brane in flat

spacetime looks like a board and is infinitely extended. Some other simple configura-
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tions of D-branes are known and were classified. These various configurations of D-
branes have interpretations in terms of field theories and also in terms of supergraviti-
es, and there are dualities between them.

The most well understood cases of these dualities are the ones between supersym-
metric conformal field theories (CFTs) and supergravities (or ciosed superstring theo-
ries ) in anti de Sitter (AdS) spacetime with a certain compact space. In particular,
the N=4 super Yang-Mills theory in four-dimensional spacetime and the type IIB su-
pergravity in a five-dimensional AdS spacetime with a five-sphere (AdSs X §%) is
studied in detail. These dualities are called the AdS/CFT correspondence [4]-[7]. In
the AdS/CFT correspondence the number 61’:‘ D-branes m-ust be large. This means that
the number of colors & is large on the field theory side and quantum effects are
small on the supergravity side. Furthermore, the strong coupling limit on the field
theory sides corresponds to small stringy effects on the supergravity side. Thus, the
strong coupling region of a field theory in large ¥ limit can be studied by using a
classical supergravity.

A problem in the AdS/CFT correspondence is that the field theory needs to have
the conformal symmetry, which is not realized in the real world, The conformal sym-
metry on the field theory side comes from the isometry of AdS spacetime on the su-
pergravity side. To apply the AdS/CFT correspondence to real phenomena one needs
to get out from the conformal symmetry. A new geometry which has a lower symme-

try should be found.

1.3 String theory in AdS spacetime

To understand the AdS/CFT correspondence more fully one needs to study a
string theory rather than its effective theory, supergravity, in the AdS spacetime. The
string theory in a curved spacetime has an action with a curved metric and other
fields such as antisymmetric tensor fields as backgrounds. To introduce background
fields in the Ramond-Ramond sector it is easier to use the Green-Schwarz formalism
of the superstring theory. The AdSs X S° background we are interested in has a five-

form background in the Ramond-Ramond sector. The action of the string theory in
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AdSs X §° was constructed using the Green-Schwarz formalism in refs. [8]-[10]. The
gauge-fixed action was then obtained in refs. [11]-[14]. Although the action of the
string theory in AdSs X S* was obtained, the symmetry structure is not yet discussed
sufficiently. Here I would like to obtain the symmetry transformations explicitly. The
explicit form of the symmetry transformations is required when one explicitly. The
explicit form of the symmetry transformations is required when one extends the
AdS/CFT correspondence to more general situations.

One of the problems in the AJS/CFT correspondence is that needs large number
of colors, whereas nature has only three. It also needs a strong coupling limit on the
field theory side. In.refs. [15, 16] a background which does not need these limit is
used to study the AdS/CFT correspondence. The string theory in this background is
still in the AdS geometry, but strings are spinning on the sphere. This background is
called the pp-wave background. Correlation functions of operators in the CFT can be
calculated in terms of an integrable system or a spin chain system well-known in the
condensed matter physics. However, only a subsector of the whole system is consid-
ered in these studies. Contributions of fermionic degrees of freedom are also impor-
tant but not fully understood. To understand these issues one has to know the
symmetry structure of the string theory in AdSsXSs.

In the following sections we would like to study the symmetry structure of the
string theory in AdSs X S In the next section we review a geometry of AdS space-
time and its isometry. In sect.3 we discuss the Green-Schwarz type action of the type
IIB string theory in AdSs X §°. We will obtain an explicit form of a gauge-fixed
action. In sect.4 we will examine symmetry transformations of the gauge-fixed
action. All the symmetry transformations except those corresponding to special con-
formal transformations and conformal supertransformations on the CFT side are

obtained, We will discuss how to obtain these last two transformations in sect.5.

Symmetries of String Theory In AdSsXSF 157



2. AdSp+2 and its isometry

Anti de Sitter (AdS) spacetime is a maximally symmetric spacetime which has a
negative constant curvature. It is convenient to represent (p -+ 2)-dimensional AdS
(AdSp+) specetime as a subspace embedded in R”" with coordinates X ¥ (M=0,1, -
,pT2) by

_(Xo)z +§ (Xi)z_(x p+2)2= __Rz’ @10

where the constant R is called a radius. X* satisfying this equation can be para-

metrized by the (p + 2)-dimensional independent coordinates x*= (x™, x#*! = P, (m=

0,, p) as
X'=Rrx™ (m=0, 1,-,p),
1
Xp+1 —_— [1 __rz (R2 — iyt n m")],
2r
: 1
X :E.. [l —p2 (RZ_xmxn n m")}’ (2.2)
r
where 7 ww=diag(—1, 1, -+ ,1) is the (p + 1)-dimensional flat metric. In terms of

these coordinates the metric of AdS spacetime is given by

ds?= — (dX°)2+ 5 (dX*')z— (de"‘z)2
i=1

dr?
=R2(r Ydxdx" 1i nm+7) SdxMdx¥gun (x). (2.3)

To introduce spinors we need to use a vielbein em™(4=0, - »+ 1), which is related
to the metric as gun=emen? 77 45 with nas=diag (—1,7+1,-++ +1). We choose the

vielbein as

ar
eaz-dxnr 6;’. €P+l:_. . (24)
¥

Then, non-zero components of the spin connection becomes

WP =gx" 52y (2.5)
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From eq. (2.1) it is obvious that the AdS spacetime has an isometry SQ(2, p+1).

An infinitesimal SO(2, p+ 1) transformation is

OXM=gMyX¥, (2.6)
where a ™y are constant transformation parameters satisfying a ¥¥ = g ¥, ¥ =
—q M8 (n MN =diag (— 1, +1, '--, +1, —1)). In terms of the independent coordi-
nates this transformation becomes

(i) Ox"=a"x", 0r=0,

(i) ox"=Ax", 6r=—Ar,

(ii) dx"=b" 6r=0,
(ivy 6x=¢ ”( ?JT + 4 ’f,'x"xr-Zx’"x,,), 0 r=2¢ "xu, 2.7
where xm =7 mix". The parameters A, 5" and £ ™ in eq. (2.7) are related to a™ ¥ in
eq. (2.6) as

R
A=g" , bnr=——am_, e
' = *"= AR

where +denote the directions X* = 7 (X?*1 £ X#*2). If we denote all the trans-forma-

tions in eq. (2.7) as 0 xM=§&M(x) (M=0, 1, - , P+ 1), it is easy to see that & ¥ is

ams, 2.8)

the Killing vector which satisfies

Dy & v +Dw & 1=0. (2.9)
In the limit » — ©0 the transformations ( 1 ), (1i ), (ii) and (iv) act on x™ as a Lo-
rentz transformation, a scale transformation, a translation and a special conformal
transformation respectively. They together form the conformal group in p=+ 1 dimen-
sions, which is isomorphic to the isometry group of (p + 2)-dimensional AdS space-
time SO (2, p+1).

The isometry transformations with tranéfonnation parameters &M satisfying eq.
(2.9) preserve the form.of the metric (2.3). However, when the isometry trans-forma-
tions act on the vielbein e x4, they must be accompanied by local Lorentz transforma-
tions to preserve the form (2.4). Therefore, the isometry transformations act on the
vielbein as |

O en'=— EVN I neu— O m E Ve + Al serf (2.10)

where the parameters of the local Lorentz tranformation A 4z should be determined
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so that 0 ex? =0 and are given by
Aag =— ENQNAB_% (D4€s—Dsé 4). (2.11)
Using eqgs. (2.4), (2.5) we obtain a more explicit form

A ab :_%(ﬁgnnb'_' ’gnm) am&",

1 ™" r 1 ' "
Aap+]:m'§i 60 amg +?]‘2nnaar£ ' (2.11)

For the transformations in eq. (2.7) the parameters & # and A 43 then become
(1) &m=amx", §=0, Aa=am, Apn=0,
(i) &"=Ax", E'=— A, Aap=0, Agpn=0,
(i) Em=b" Er=0, Aas=0, Xon =0,
(iv) &= gr{—bate) =28, £r=2rLxm,
R = = 2L o= o) S5 Ayt = =~ Than 2.13)

When the isometry transformations act on quantities with local Lorentz indices,
we should use a combination of the general coordinate transformations and the local

Lorentz transformations with the parameters £ *, A4 in eq. (2.13).

3. String action in AdSs XSS

Let us consider the type IIB string theory in AdSs X 8% The metric of the AdSs X
S*is

ds?=R? (rzdx X" T} o+ c:_rj +dx™ dx" garii ) , 3.D

where the first two terms are the metric of AdSs in eq. (2.3) with p= 3 and the last

term is that of S°. In the following we put R=1 for simplicity. Qur index conven-

tions are as follows. Curved indices are denoted as m = (M, m’),(M=(m, 4y=(0, -,

4), a"=35,+, 9), whereas local Lorentz indices as a =(4, a’)(4=(a, 4)=(0, ", 4),a’

=5, *=*, 9). The primed indices m , a "denote the coordinates of $°, while the indices

M, A denote those of AdSs. The vielbein and the spin connection are given by (2.4),
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(2.5) with p= 3 for AdSs and
e =dx" ew, WY =dp" Wargy (3.2)
for S°.

It is convenient to represent the ten-dimensional 32X 32 gamma matrices '* as

T=741Q1Qug,, |

T =1Q7° Q0. (3.3)
where @1, 02 are the 2X2 Pauli matrices, and ¥4 and ¢ are the 4 X4 gamma ma-
trices of SO (1, 4) and SO (5) respectively satisfying

(v, yoh=2048, {77y }=25", (34
In this representation a positive chirality spinor ¥ has components

v=(3) s
where ¥ has 16 components. The last factors of the gamma matrices in eq. (3.3) act
on the two components of eq. (3.5)

The Green-Schwarz type action of the type 1IB string theory in AdSsX S° was con-
structed in refs. [8, 9, 10]. The world-sheet variables are a world-sheet metric g;(c)
and spacetime superspace coordinates (x™ (0), @ 4(©)), where ¢! (=0, 1)are world-
sheet coordinates and ®/(J= 1, 2) are two 32-component Majorana Wey! spinors of
positivé chirality.(The definition and some properties of Majorana spinors are summa-

rized in Appendix.) The action is given by

5= Sdzg(_%J__gggLfﬁLjﬁ nab—zisﬁs d:Lj-’;S”@fI‘éLﬁ), (3.6)

where s* has non-vanishing components s''= —s22=1,
h ; .
v =[=5) o)
M

L8 =dv eyié —4;@!1“&[(5“"’;4#) D @]

i
(Mz)u:- c fx(_ YA@K@JTA_F T-a’ @K@J-ra,)
+—g'3— EX( Y BOIBKTY 15— 77V OB Y 2y),

(D@)f=[d+%(cowr s+ T )] ®"“;l>‘f Uy utie’T )@, (3.7)
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and L/=L,_,, L*=L%, . This action is invariant under world-sheet reparametriza-
tions and K-transformations as well as transformations of the supergroup SU (2,2(4)
containing the isometry SO (2,4) XSO(6) of AdSs XS’ as a subgroup.
The gauge-fixed action of the type 1IB string theory in AdSs X S° was obtained in
refs. [11]—[14]. The K-symmetry was fixed by using Killing spinor gauge [11]
@2=—j740Q] ' (3.8)
In this gauge the action is greatly simplified. To simplify the expressions further we

define new variables &/ as
o=t (§), (3-9)

where 07 have 16 components and
F ™ )=t 1o Tig v g 2% Tng 1 Tag 2% T, (3.10)
is a quantity introduced in [17] as a solution of a differential equation

. L .a ¥ ..—L‘ . =
(am +4wm Tdb 2 ITm'r‘f)f 0. (3.11)

The geuge condition (3.8) becomes 82= —ir*8'. L s ineq. (3.7) are then simpli-
fied as
Li=r(d05—ir0/7d0"),

Li=4,
La =dx‘"'em"" )
1 I
Li=p f( dg’ ) (.12)

Since the explicit form of the action in the coordinate system used in eq. (3.1) was
not given in ref/, [12], we shall now work out it. To write down the second term (the
Wess-Zumino terrn) of the action (3.6) we introduce

TA=yUf T lyertf, ZE=y0flyerd f. (3.13)
From eq. (3.11) it can be shown that they satisfy
Om Z4=iew & La ,
O 2%+ 0w Ty ZY =igw X4, (3.149)

Then, the Wess-Zumino term can be written as
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Swe= | d20 (=20 £ (9,8 29,0 +idxm rT S0 3,0)

={d202ie00,8249,0, (3.15)

where 8 =0 '=;i7+02and we have used the first equation in eq. (3.14) to derive
the second expression. Using the field equation of gy to eliminate it we obtain our fi-
nal form of the action

S=§d?0(—/—h+2ic9 3,0 249,0), (3.16)
where

hy=EFfEP Nas (3.17)
with

5;’ EF = 0ix"en. (3.18)

Ef=r(0uxm05 —2i0 1°3:0), Ef=

4, Symmetries of the action

The action (3.6} is invariant under transformations of the supergroup SU (2, 2/4).
The gauge-fixed action (3.16) should also has the SU (2, 2|4) symmetry. However,
some of the original SU (2, 2{4) transformations do not preserve the gauge condition
(3.8). To recover the gauge condition one has to add a compensating K-transforma-
tion to the original SU (2, 2|4) transformation.

First consider a subgroup SO (2, 4) of SU (2, 24), which is the isometry of AdSs.
Before the gauge-fixing (3.8) the transformations of the bosonic variables are 2.7
and 0 x™ =0. The transformations of the fermionic variables are given by the local
Lorentz transformations

6O!=—A""T 150 CBY
with the transformation parameters A“° in eq. (2.13). In terms variable 6 these

transformations become

(i) 682&-&"7@9,
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(i) 86=-A0,
(i) 66 =0,

(iv) 69=—(x“CbTaTb+-i—'C"Ta24)9- (4.2)

The transformations ( i )—(iii) preserve the gauge condition (3.8) and do not need a
compensating K-transformation. Indeed, it is easy td see that the gauge-fixed action
(3.16) is invariant under these transformations. On the other hand, the transformation
(iv) does not preserve the gauge condition and needs a compensating K-
transformation. Without this K-transformation the gauge-fixed action is not
invariant. We will discuss this transformation in the next section.

As for the supertransformations in SU (2, 2|4) we distinguish the cases £2=—i7¢’
and e2=i71*¢& . Forthe case € 2=—i 7 * &£ ! the transformation preserves the
gauge condition {3.8) and is given by

Bxm=2ETe@8™, O6r=0, 0x" =0, 0660=c¢. 4.3)
The gauge-fixed action is indeed invariant under this transformation. On the other
hand, the case £ 2=i7* &' does not preserve the gauge condition (3.8) and needs a
compensating £-transformation. It is not easy to obtain an explicit form of this -
transformation. directly. One way to obtain this transformation is to use the commuta-
tor algebra of the transformations, From the commutation relations of the SU (2, 2|4)
algebra this transformation can be obtained from the commutator of the bosonic trans-
formation (iv) and the supertransformation for & 2=—i 7 % £ !, Therefore, once we
know the form of the bosonic transformation (1v), which we will discuss in the next

section, we can easily find the supertransformation for €2=iv4el.

5. Modified isometry transformations

In this section we try to obtain an explicit form of the bosonic transformation (iv),

which needs a compensating K-transformation. Under the original transformation (iv)
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in egs. (2.7), (4.2) the variation of the Lagrangian up to quartic terms in 8 is
0 L=—2i(y—hh¥ — £9)(2r 9;x "L H 2438 +2r=1 3 3 {0 7.0:0
— O 3ix L0 2 8 +ir 8ix Bix"CIOY D O )
+ 4ei0;x " (DL . B 3: 0. (5.1)
We see that O (69) terms have completely cancelled out but O (62) terms remain,
Thus, the action is not invariant under this transformation.
We add extra terms 0 to the transformations (2.7), (4.2) of order
0'x", 0'r, 6'x"=0(0?), 66 =0(0) (5.2)
corresponding a compensating K-transformation. In principle, 6' can be obtained by
explicitly constructing a compensating £-transformation. However, we choose an-
other route to find them. We make a plausible guess about the transformations and
check the invariance of the action under them. The variation of the Lagrangian up to
quartic terms in & under the new terms in the transformations is
O'L=0ai(4—hh'r20;x ) (8'x*—2i876'0)— 2N—hh¥ 3ix " Di(0'x"gorr)

~#kh‘f(‘i—f’ EuBf+ 0'r 5‘:ff”+ f;" aja’r)

—4igVrdi BYf 7 Yo (A Ya+iE; 74 £6'0
—4i(V—hh — £5) r20,x90,07.0'6. (5.3)

To find required transformations we introduce a matrix

= 21/1__’7 eVECEST 45, T2=1, (5.4)
which satisfies an identity

J— b EiTeT = giET;, (5.5)
In the representation (3.3) of the gamma matrices I" becomes

F=Te®@1 + IRios, (5.6)
where

I'o= 1 EU(EIAEjE?AB‘{‘EE&E}é?’a'b'):

2=
= = EIEAEY T 4T ¥ (5.7
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From I"2=1 we obtain

(TokiT )2=1. - (5.8)
The identity (5.5) is then written as
A—hhY (B vaLi E;oYa)(TotiT)= €9 (B4 vatiE® 7). (5.9)

We may try a guess about the transformations. For instance we may try
§xm=2i Grad'0 o~ 2ir LBy 40 61,

Sr=0,
§'xm'= (0% 7,270,
80 =r M1~ Y(Lo+ilDf1 L7 7aZ40. (5.10)

There are many cancellations in the variation of the Lagrangian under this transfor-
mation due to the identity (5.9). There remain only

(6-+0"YL=4i(y—hh¥ — £¥) r 0,x°L0i07a[ 1+f N To+il)f1 724 6.

(5.11)

There terms, however, do not cancel. We have to look for a transformation under

which the action is invariant but have not succeeded yet.

Appendix: Identities for Majorana spinors

A Majorana spinor ¥ satisfies
Pp=—9’CC, P=—CTICPT, (A.1)
where C and C’ are the charge conjugation matrices of SO (1, 4) and SO(5) respec-
tively. They satisfy
CraamC = —g,(yalanl Clyal anCiml=—g, (yal=aml (A 7)
where

¢ = { +1 (n=2,3) (A3)

—1(®=0, 1, 4, 5).

From egs. (A.1), (A.3) we obtain for Majorana spinors % and %

157 alamap Blvln o = — g g 5y alvam 7 BBl (A.4)
For the quantities defined in eq.(3.13) we obtain

CC'ZACTICT'=(ZYT,  CcC'ZeCcTIC™i=(Z¥)7, (A.5)
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and

PE =— Y, PRIy =y TP, (A.6)
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